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Stability of Heterogeneous Aeolotropic Cylindrical
Shells under Combined Loading
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A theoretical analysis of the buckling problems of heterogeneous aeolotropic cylindrical
shells under combined axial, radial, and torsional loads is presented. Four boundary condi-
tions at each end of the cylinder are satisfied for the case of both ends hinged or that of both
ends clamped. Classical thin shell theory of small deflection is followed. Because only six
elastic coefficients are required out of the usual 21 for a general aeolotropic body, it is possible
to solve Flugge’s differential equations of equilibrium by assuming suitable functions for the

displacements of the middle surface.

By the superposition of these solutions, a general solu-
tion that satisfies the boundary conditions can be reached.

If the thin shel_l is laminated from

layers of different materials, the resultant forces and moments of an element are integrated
from layer to layer by considering that the six elastic coeflicients are piecewise continuous.
Orthotropic and isotropic materials are particular cases of this analysis.

Nomenclature

radius to middle surface of shell

elastic coeflicients

strain components

strain component of middle surface

Young’s modulus

shear modulus

thickness of cylindrical shell

buckling coefficient

length of eylinder

number of half-waves in axial direction

resultant moment per unit length

number of waves in circumferential direction

resultant force per unit length

external radial pressure

external axial compression per unit length

load parameter

external torsional force per unit length

axial displacement of middle surface

circumferential displacement of middle surface

radial displacement of middle surface

axial coordinate of middle surface

change of curvature or angle of twist of middle
surface

radial coordinate of middle surface

circumferential coordinate of middle surface

dimensionless parameter = mmra/L

Poisson’s ratio

stress components

major and minor elastic axes of orthotropic mate-
rial parallel to z-6 plane

angle between x axis and £ axis
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Introduction

T seems that so far there is no publication that covers a
general study of the stability of aeolotropic (or anisotropic)
material under combined loadings. Ambartsumian,! in his
recent survey, cited several papers, most of which are in
Russian.. However, these papers actually deal with ortho-
tropic material. March et al.? solved the buckling of thin-
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walled plywood cylinders in torsion in 1945, and March?®?
solved the buckling of long thin plywood cylinders in axial
compression in 1956, The former is based on the thin shell
theory of small deflection, and the latter is based on the thin
shell theory of large deflection. Both use the energy method.
They actually deal with the heterogeneous (or nonhomo-
geneous) and anisotropic material, because each layer of the
plywood can be orientated at any angle. However, these
analyses still are limited to single loading and partially satis-
fied boundary conditions. As for the papers by Becker and
Gerard?in 1962, by Cheng?in 1961, by Hess? in 1961, and by
Thichemann et al.* in 1960, they also are limited to ortho-
tropic material and partially satisfied boundary conditions.

The present analysis is more general in solving the buckling
problems of nonhomogeneous anisotropic cylindrical shells
under combined axial, radial, and torsional loads with all four
boundary conditions at each end of the cylinder satisfied.
Based on the classical thin shell theory of small deflection, the
usual assumptions! can be summarized as follows:

1) The ratio of the thickness of the shell to the radit of
curvature of its middle surface is small as compared with
unity.

2) Displacements are very small as compared with the
thickness of the shell.

3) The straight fibers of an element which are perpendicu-
lar to the middle surface before deformation remain so after
deformation and do not change their length.

Because of the third assumption, it is possible to reduce the
number of independent elastic coefficients C;; of an aniso-
tropic thin shell from 21 to 6. With the elastic coefficients
given, stresses can be defined as functions of the displace-
ments of the middle surface from the stress-strain relations
and strain-displacement relations. Furthermore, the re-
sultant forces and moments can be defined as functions of the
displacements of the middle surface. If the shell is laminated
from layers of different materials, it is then piecewise homo-
geneous but nonhomogeneous as a whole. Similarly, C;;s
are piecewise continuous. The resultant forces and moments
can be integrated piece by piece.

Flugge’s differential equations of equilibrium® are used to
derive the characteristic equation for buckling under com-
bined loads. Donnell’s method® is followed to establish the
boundary conditions. Since there are so many coeflicients
involved, the electronic computer should be used to solve
the problem. Because of this fact, the authors do not at-
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tempt to simplify anything in the course of derivation of
equations.

As has been pointed out already by Von Kdrmdn and
Tsien,” Gerard and Becker,® and others, large deflection
theory must be used for buckling under axial compression.
Hence, in the application of this analysis, axial load should
be limited to tension or small compression in combination
with other loads, e.g., torsion and internal pressure.

When materials like plywood, reinforced structure, or
glass-reinforced plastic are layered orthotropically, they
are nonhomogeneous and orthotropic. If they are not
layered orthotropically, they are nonhomogeneous and
anisotropic. In this paper, when cylindrical shells laminated
from orthotropic materials, the inclination angle ¢; between
the major elastic axis of any sth layer and the axial axis of
the e¢ylinder can be any value. The thickness of each layer
does not necessarily have to be equal to that of the other
layers.

Basic Relations and Equations

For infinitesimal strains, the stress-strain relations may
be expressed by the general Hooke’s law” ' in the matrix
form:

Oz O Cre Ci5 Cry Co5 Cg €z
gg Cor Cay Cyg Cyy Cos Cag €
(2 _ Cs1 O3 Css Cyy Cys 036 €. (1)
[P Cy Cu Cis Cuy Cys Cys €p:
Tz _ Cs Csy Cs3 Csy Css Cse €zz
[F7] Cot Coz Cos Cos Cos Cos €z0

where the C;’s (7,7 = 1, 2, . . ., 6) are elastic coefficients, or
moduli, of the material. Also, since C;; = Cj;, there are 21
elastic coefficients for an aeolotropic or anisotropic material.
Based on assumption 3 mentioned in the introduction, the
stress-strain relations of an anisotropic material become

25 Cyy Oy Cis €z .
Go = | Cy Coy Cos € (2)
Oz Cis Cos Ces €0

There are now only six elastic coefficients in Eqs. (2). With

these coefficients given, the resultant force (moment) and
stress relations® can be established from Fig. 1:

h/2 z
S =
N, f_m o (1 + a) dz

HETEROGENEOUS AEOLOTROPIC CYLINDRICAL SHELLS

893
h/2
N@x = f—h/2 ngdz
h2 N 3
M, = f—k/2 os <1 + ;> 2dz
k/2
AMG = fwh/2 (TgZdZ

h/2 Z
Mo= [0, 0 (1 + ;> 2dz
Mo = [ uad
Moz = f—h/z 09202

For a cylindrical element, the strains e,, ¢5, and e, can be
expressed in terms of the displacements u, v, and w of the
middle surface of the shell :#

€e = U,z — 2W, 2z
o 202 Wao w
i a aa+z a—+z (4)
I z _ ¢ i
exe~a+z+<1+a)v,x W,x9<a+a+z>

If 1/(a 4 2) is expanded into the power series

1 1 z 2\ 2 AN
e L R I N A

and (z/a)® or higher orders are neglected as compared with 1,
Eqgs. (4) become

e = e + 2X,
e = e + z[1 — (2/a)] X (6)
e = [1 4+ (22/20%)] e.s® + 2[1 — (2/2a) ] X1
where
et = U,
e® = (1/a)(v,0 + w) %)
" = (uo/a) + v,z
are the strains at the middle surface of the shell, and
Xx = —W,z2
Xy = —(1/a®) (w5 + w) (8)
Xoo = —(2/a)[w=p + (w6/2a) — (v,./2)]

are the parameters corresponding to the change of curvatures
or the change of angle of twist.

Substituting Eqs. (2) and (6) in Egs. (3), the following re-
sultant force (moment) and displacement relations are estab-
lished:

B B B D D ) D
N. Ay + == Adp+ = As+—+ 7 Bu+— B:  Bs+ 5
a . a a 207 a 2a
D D D, — —
Ny Ay Az As -+ == By, By — =z By — = ;0
2a? o 2a
B B, B D D D
Nag A+ = A + == Ag + =% + —6: By + = B Bes + = eg”
a a a 2a a 2a
D D. D,
Ny, = A A Ae + ﬁ B By — 726 By — 2—;6 €24° 9)
D D D
M., By+ =" Bu+-—  Bs+-— Dy Dy Dis X,
a a a
M9 BIZ B22 B26 D12 D22 D26 Xﬁ
D D. D
M. Bu+ % But ="  Bwt 7 Dis Deg Dys | Xeo |
| M oz _| - By B.g Bss Dis Doy Dss N
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where, respectively,

h/2
(Asj, By, Dij) = f Cii(1, 2, 2%)dz (10)
—h/2
with 4,7 = 1, 2, 6. Ad;/s, Bi/s, and D;/’s are symmetric

coeflicients because C;;’s are symmetric. If the thin shell is
made from laminated layers, then the integration of Egs.
(10) can be carried out from layer to layer with C;; to be
constant for each layer; C;; may be different from layer to
layer. )

From Fig. 1, considering the deformation of an infinitesimal
element, the following differential equations of equilibrium
exist during buckling :

aNq.o + Noog — pluge — aw,z) — aPuo — 2TU 9 = 0

aNog + a®Nag,. + Mop + aM g, — pa(v s + wg) —
a*Pv .. — 20T W9 + w,.) = 0 (11)

Mowo + a(Meo + Mos),oo0 + a*M, 0o — alNg —
palau,. — vg + wep) — a®Pw.e + 2070, — wae) = 0

where p, P, and T are, respectively, the external radial pres-
sure, the external axial compression per unit length, and the
external torsional (shearing) force per unit length. Substi-
tuting Eqgs. (7-9) in Egs. (11), the differential equations of
equilibrium then can be expressed in terms of the displace-
ments of the middle surface of the shell:

azu,zx(z‘Iu + Bn - 92) + ZaU,xe(x‘Il.e - Q3) +
u,eo(fise - Bss + Dss - {Il) -+ a2v,zx(x4_16 +
2B15 + Dis) + av..o(A12 + A + Biz + Bes) +
U,GBA_~26 - agw,xz:c(Bll + Du) - azwyxzo<3316 + Dlﬁ) -
a10,206(Brz + 2Bss — Des) — w ops(Bos — Das) +
aw.z(filz + q) + ’w.o(fize — By + Dzs) =0 (12a)

a2u‘2x(-A-_16 + 2315 -+ Dlﬁ) + au.ze(/Lz + Aes + Bse +
El?) + Uv,eaz‘ize + azv.xz(/Ies + 3Bes + 3566 — q) +
2av,26(Azs + 2Bos + Dys — g3) + vee(1 + B —
@) — W22 (Bis + 21_)16) - <l2@U,xz0(sz + 2Be +
[)12 + 31-)66) - aw.zﬂ&(gé% + 2[)26) - w,oaf)Bzz +
aw..(As + B — 2¢5) +we(l —q) =0 (12h)

—0MUera(Bu + Dip) — 2203815 + Dig) —
W, 200(Bra + 2B — Das) — t ppo(Bas — Dis) +

oo (Ar + ) + wo(dos — Bas + D) — 0,000 X

(Bm + 2D16) - azv,xzﬂ(BH + 2Bss + D-12 + 3D66) -
av.xﬁﬁ(SEZG + 2D26) - 7),090322 + (M).z(x‘IQs + Bze -

2q3) + 06(1 — q1) + QW sseeDy + 403W,2a00Dis +
200, zapo(Drz + 2Dss) + 4aw,z008D25 + w p06 Doz —
azw,“(ZEIQ - (]2) - 21110,:0@326 - Dze - 93> -

w,ﬁe(QBw - 21322 —q) + w(l — Bzz + Dzz) =0 (12¢)

where, respectively,

(4, Bij, Dip) = (1/An)(Asy, Bij/a, Dij/a?) (13)

Ne M Mex
NaxtNex,s 40 MMy ydx
No+ No,::’+ " Mﬂmlmt::o Myo+Myexd
@ ''x0,X
Nyt Ny x x5 b

Fig. 1 Shell element
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and
(41, g2, q5) = (1/A2)(pa, P, T) (14)
with 7,7 = 1, 2, 6.

Solution of Differential Equations

Equations (12) are complicated partial differential equa-
tions that are very difficult to solve exactly. One possible
particular solution is by the inverse method. Let the dis-
placements of the middle surface of the shell be

u = U sin[(Az/a) + n6]
v V sin[(Az/a) + n8] (15)
w = W cos[(Az/a) + né]

where U, V, and W are constants, A = mwa/L, n is the num-
ber of waves in the circumferential direction, and m is the
number of half-waves in the axial direction if the circum-
ferential waves do not spin along the cylinder.

Equations (15), of which the origin of the coordinates is at
the mid-length of the middle surface of the cylindrical shell
as shown in Fig. 2, cannot satisfy any boundary condition.
If the length L of the cylinder is very long, then the constraints
at the ends will not affect greatly the magnitude of the
critical stresses. If the cylinder is not very long, then the
end conditions must be considered.

First, let the solution of Egs. (15) be investigated. Sub-
stituting Eqs. (15) in Eqgs. (12), one has

[Fu - )\292 - 2n)\q3 - nZQl F12 Fl3 + )\91 ]
X

F12 Fzz — >\2q2 — 2n)\q3 — 7L2(]1 F23 — 2)\(]3 — N
Fis + Ay Fas — 20gs — ngr Fas — Ny — 2nhgs — n’qq

U
[V =0 (16)
114
where

Fu = (/Iu + 31_1))\2 + 2nd s\ + ’ﬂZ(A—es -
Bes + Des)

Fy= (z‘Ile + 2316 + D-IS))\Z + n(x‘Ilz + Ag +
Ew + Be;s)}\ + nzg%
Fyy = (Bn + Dn))\?’ + n(33i16 + st))\2 +
[n2(Brs + _2366 — Deg) + AN +
n3(Bys — Das) + n(d2 — Bos + Das)
Fo = (/Iﬁ_e + 3Bee + 3D66))\2 + QW(A% + 2326 + a7
Dy + n2(1 + By

Foy = (Blﬁ -+ 2D16))\3 + n(Bm + 2B + [)12 +
3Dw)N? + [n*(3Bs + 2Dus) + Au +
Bzep\ + n3Bn + n

Fy = DiM + 4nDisA® + 2[n%(D1s + 2Des) +
Bi]A? + 2n(2n2Dss + 2B:s — Do) X +
(n? — 1)2Dss + (202 — 1)Bsy + 1

In order to have nontrivial solution of Eqs. (18), the deter-
minant of the coefficient matrix must be equal to zero:

Fii — Nqgo — 2nhgs — niqp Fis Fis + An
F12 ng —_ A2C_I2 _ 2%)\93 - 'ﬂ2q1 F23 - 2)\q;; — ng =0
Fis - Ay Fos — 2Ngs — ngy Faz — N2 — 2nhgz — gy

(18)

Equation (18) can be expanded into the following quadratic
form by neglecting those terms containing the factors g.q;qz,
where ¢, j, k = 1, 2, 3, which are negligibly small as compared
with the constant term He:

H1q12 + qulq:; + H3Q32 + H4Q1 + Hs'}]a + He +
1'1{7922 + Hs(1192 + ngz% + HIOQz =0 (19)
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Fig. 2 Orientation

of axes in the mid-

dle surface of cylin-
drical shell

where

H, = ni(Fy + Foy 4 Fsy) — 2nAF1 + 2n\Fy3 —
)\2F22 —_ 27L3F23 — nZFHl

Hy = AN[n¥(Fyu + Foo + Fyg) — ANy + nnF3 —
nFn — 2n2F23]

H; = AN [n¥(Fyy 4 Foy + Fygg) — 'y — 2nFy]

Hy = n2(F? + Fig® 4 Fos® — FuF oy — FpFy —
Fulss) + 2n(FuF s — Fialfys) + 2N(F1oley —
Fy5F )

Hy = Qn)\(sz + I+ Fog? — FuFy — Folyy — (20>
FyuFs3) 4 4ANFllys — FioFis) ’

He = FiullpFy 4 2F0F 5l 0 — Fullos? — Iopl'i3? —
Fagl'y?

Hy = MNPy + oo + Fi)

Hg = 2n2A2(Fyy + I'oy + Faz) + 2N3F13 — 2n\2F o3

Hy = 4N n(Fy + Foo + Fs) — Fas)

Hio= N(Fu? + Fag? + Fig? — Py, — FyFyy — FuFyy)

With given material and dimensions, the minimum ¢; may
be found from Eq. (19) in terms of ¢; and ¢x, where ¢, j, &k =
1,2,3and ¢ =5 = k.

If the given material is isotropic, then the characteristic
Eq. (18) can be reduced (see Appendix) to the characteristic
Eqgs. (V1I-10) and (VII-24) given by Flugge.®! For ortho-
tropic material, the characteristic Eq. (18) does not check
exactly the characteristic equation by Cheng.? The latter
is not symmetric because the basic relations and equations
are due to Timoshenko and Gere! with more simplifications
involved. However, their numerical results have no signifi-
cant difference, as will be pointed out in another paper.1®

Boundary Conditions

As was stated in the previous section, if the cylinder is not
very long, the constraint effect at the ends cannot be neg-
lected. Furthermore, when a very long cylinder is being
discussed, it is difficult to decide what length may be called
safely “very long.” Hence, it is essential to investigate the
boundary conditions.

Take another look at the characteristic Eq. (18). After
expanding, it is an eighth-degree polynomial of . Assume
that the minimum g¢;, corresponding to a certain value of n,
has been found from Eq. (19) in terms of ¢; and ¢;, where
1,7,k =1,2, 3and ¢ #j = k. Substituting ¢:, ¢;, ¢z, and
n, as well as the given dimensions (except length) and mate-
rial properties in the polynomial, eight roots of A will be
found. At least two of these roots are real, because one of
them must be the original real one. All eight roots of A
satisfy the characteristic Eq. (18) with the same ¢, g;, ¢, and
n. By the principle of superposition, Eqgs. (15) becomet

1 This method first was used by Donnell, in 1934, to solve
the buckling of thin tube under torsion.? He simplified Flugge's
differential equations to such a point that the expanded char-
acteristic equation was a fourth-degree polynomial of A. He
had to do that because, at this time, without the aid of a high
speed electronic computer, it was not realistic to attempt to solve
an eighth-degree polynomial.
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8 A
u =y, Uksin< kx—i—nﬁ)

a

k=1
8 A
» = 3 V,sin <—’“x + n0> @1
k=1 a

i

w

8 . A .
S Wecos <ka + n0>
k=1 a

For each Ay, Uz and V; can be determined from Egs. (16) in
terms of Wi, Let the root Az be

A= (A + TN = —1Y2 (22)
Then, correspondingly,
Wi = (W, + Wi (23)
U = (fur + ifui)sWy (24)
Vi = (for + ifudsWy (25)

where N, Ai, Wo, Wi, fur, fuiy for, and fu; are all real values.
The coefficients fur, fui, for, and fu; are determined from Eqgs.
(16). If Ay is real, then i, Wi, fui, and f.; will be zero. In
defining, if A\; = 0, then

W, = s Wey = Wi
and if A; # 0, then
Wo= Wey, = 3Ws
Wo = =W, = Wi

After a few manipulations, Eqs. (21) become
7

u (U Wi + Ueiy Wiags) cosnd +

E=1,3, .

(Lrsr,;ﬁ?k + U

byl

sik+11'1fk+1) Sinn0]

7 —

' k=21:3 [(V”kﬁ/vk + V”I\:+11Vk+l) cosnf + (26)

(Ve Wi + Vi Wiia) sinnd]

7
Z [(WWW;C —I— WMHII’_V;CH) COS’I’Le +
k=1,3,

(W Vi + W

41

g
I

sty WY"’-H) sinn@]

where
L‘Tcr = ur§-3 - fui§-4

Ue = fule + fuita
V(?T = f7‘r§3 - fﬂi§4

Vsr = fvrg‘Z +fvi§1
Vvor = §‘2 P}
]’Vsr = {3 ( 7)
&1 = sin(Ax/a) sinh(hz/a)
o = cos{hzx/a) cosh(hur/a)
s = sin(A\x/a) cosh(hz/a)
¢ = cos(Na/a) sinh(Nix/a)
and if \; = 0, then
Ui = U Ui = U,
Vee = Vor Vi =V (28)
We =W, We =W,
and if A; = 0, then
ljci - furg‘éi + fuig‘:i
T(;Si = f_furil__lf_ fuzg‘Q
¢ = 1;r§-4 vi?.’i 20
Vi = —fuls F fus (29
IVci = ‘—f‘l
T/Vsi = '—?4

Substituting Eqs. (26) in Eqgs. (7) and (8), one has
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—7’L(2W;m' + Usz) + )\rV.?i + )\iVsr

z8et

1 JZ _ -
We == 3 ((WaergWe + Weusy Wiss) cosnd +
G k=13, . _
(Wzsrka + IV:csik+1ch+1) Sinnﬁl
1 _ o
el = - 2 [(excrka + ezcik+1Wk+l) cosnd -+
a k=1,3,_ _
(Casr, Wi + €aiy , Wia) sinnd]
1 2 _ —
e’ = " Y. (oo, Wi + esei, W) cosnb +
k=13,
(6asrka + eosik+1W/¢+1) smn@]
1 7 _ —
€’ = P 20 [eotor, Wi 4 €asesy W) cosnd +
k=13,
(exOsrka + exﬁsik+1Wk+l) Sinno]
7
XI = (; 0 s [(chrka + X:ccik_HWIc-H) cosnbé +
(Xzsrka + Xxsik+1Wk+1) s1nn0]
1 — _
Xy =~ 2 (XKoo 4 Xoguiy, Wipr) cosnd +
a® k=1,3,
(Xosrka + Xosi, +1Wk+1) sinnf]
1 7 _ —
Ko=) 3 [(Keaor,Ws + Xony,, Wris) cosn +
a® k=13,
(‘ z&srka + Xxﬂsik_HWI:.H) Sinnﬁ]
where
Wa:cr = —‘>\r§‘3 + )\i§'4
Wasr = =Nl — Ny
€zer = >\rUsr - >\iUsi
€zsr = _Ar(]cr + inri
€oer = nT’sr + VVcr
€9sr = —nVcr + I/Vsr
Cxfor = nljsr + >\TV.sr - >\1Vsz
Cafsr = —nUcr - >\er1' + )\ivci
zer — (>\r2 - )\52)% + 2)\rx1§‘1
zsr T _<>\1‘2 - Ai2)§3 + 2)\7‘)\1,{4
Xﬁcr = (n2 - 1)?2
Xoor = —(n* — 1){
Xz@cr = _n(214/vxsr + Usr) + )\TVsr - )\ivsi
Xxf?sr = n(2I/chr + Ucr) - >\er7' + )\ivci
and if A; = 0, then
VVzci = Weer Wzsi = vasr
€xci = €ger €zst = Casr
€hci = €fer €hsi = €fs;
€z6ci = Exfer Cz0si = C€xfsr
-chi = Xa:cr Xxsi = Xzsr
Xé’m' = XBCT Xﬂsi = Xﬁsr
Xchz = Xxl?cr Xxﬂsi = X:cHsr
and if A; 5 0, then
chi = —>\r§‘4 - >\i§‘3
Wesi = M1t — Mlo
€xei == Arl]si + )\iDYsr
€zsi = _)\rUci - >\iUcr
€9ci = nvsi + I/Ifci
€si = _nIIC’I: + -W/vsi
€xpci = nl]si + ATT/&i + )\ivsr
€xhsi = —n(jci - )\eri - )\chr
Xeeo = — (M2 — A0+ 20N
Xzsi = _()\12 - )\i?)§‘1 - 2>\7)\@§‘3
Xpew = —(n* — D
KXo = —(n* — 1){,

n(2chi + Ucz) - )\eri - )\chr

28st

(30)

(31)

(32)

(33)

With all the foregoing equations available, the investiga-~
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tion of the boundary conditions now may proceed. It has
been pointed out in many textbooks® !4 that, at the boundary
of a cylindrical shell, the shearing force N.» and the twisting
moment M,s can be combined together to be an effective
shear per unit length 7', i.e.,

T, = Nog + (Maoo/a) (34)

If there exists an axial load P due to the rotation of a line
element by an angle v,,, this axial load P produces a com-
ponent Pv, in the circumferential direction. Therefore,
the total shear per unit length 7., at both ends of the cylinder
is

Toy=T:.+ Pvo— T 35)

By the same reasoning, the torsional load 7' at both ends
produces a component T'u,¢/a in the axial direction due to the
rotation of a line element by an angle 4,0/a.5 The total axial
force per unit length N, at both endsis

Ney = No+ Tup/a — P (36)

There are four boundary conditions at each end of the cyl-

inder. Two of them are as follows:
1) For the case of both ends hinged
w =0 M,=0 37
atz = =(L/2)
2) For the case of both ends clamped
w =0 w,e =0 (38)
atx = =(L/2)

Another pair of boundary conditions for both of the foregoing
cases are as follows:
3) Ifv, u # 0atboth ends, then

T.+ Pv.=0
atr = =(L/2) (39)
N, 4+ Tup/a =0
4) If v, w = 0 at both ends, then
v =20 u=0 (40)
at z = =(L/2)
5) Ifv = 0 and v = 0 at both ends, then
T, 4+ Pv, =0
atx = =(L/2) (41)
u=20
6) If v = 0 and u > 0 at both ends, then
v=0

at x = £(L/2) (42)

N 2 + Tu,e/ a=0
For example, for radial load only, it is known that P = 7' = 0
and v, u ¥ 0. The boundary conditions are Egs. (37) and

(39) for both euds hinged, and Egs. (38) and (39) for both
ends clamped.

From Egs. (9, 30, and 34), one has

A22 7 P, —
N, = . > (WVeer Vi + Naeip  Wieia) cosné +
k=13,
(NxsTka + Na:sik+1Wk+1) Sinn@]
A22 7 — =
T. = - kzzl’?—’[(kaWk +—Txcik+ka+1) cosnd =+ 43)
(Toor, Wi + Teaiy ,Wita) sinnb]
7
Mx = A22 Z [(MzcrkWIc + Mzcik+1Wk+1) cosnb +
k=1,3,

(Moo, Wi + Meei,  Weis) sinnd]

sik_l_l
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where

Ng;j = (A-u + Bu)_exj + (/Lz + ?12)66:' :i' [fi.lﬁ +
Bm + (Dlﬁ/z)]exﬂf ‘j‘ (Bu + Du)Xzi +
BuoXoi + [Bis + (D16/2)1Xz0;

T = (x‘Lf + 2By ‘|: Dle)ez:’_'f‘ (I‘I26_+ 2By +
Dze)eoj +_(Ass + 2Bss_+ %D_ﬁe)ezei +
(Bils + 2D_16)X:ci + (Bas + D) Xo; +
(Bes + 3Des) X205

(Eu_-l— Dllze;u + (BIZ_'I" Dioyes; +
(_Bls + DIG)_exﬂi + DuX.; +
D12X0i + DIGXxﬂi

with j = cr, ¢t, sr, si. From Egs. (26), (43), and the first of

Egs. (80), it is clear that, corresponding to conditions of Eqs.
(87) and (39), at z = L/2,§ one has

7

(44)

I

M;

crka + IV”]¢+1W]°+1) =0

w
=13,

I
=

M-~

Wk+1) = 0

sipyy

W We+ W
k 3,

I
-

7
kzzljg (Taer, Wi + Taci ;W) = 0

(szrka + T Wk+1) = 0
3,

xsik+1
(45)

k;g (Nzcrka + Nrcik+1WIc+1> = 0

M=~

(Nxsrka + Nxsik+1Wk+l) =0
k .

I
—

3

M-~

X (Ma:crka + quik+1Wk+l) =0

I
—-

.3

M-~

(szrka + Mz:ik+1Wk+1) = O

k 3,

I
=

Equations for other conditions can be formulated similarly.
Equations (45) or their equivalents for different boundary
conditions are eight homogeneous equations of eight unknown
W’s. For the nontrivial solution, the determinant of the
coefficients (let it be called boundary characteristic) must
equal zero. The minimum length L, except in the case of the
identity L = 0, solved from the zero determinant, is the
length of the cylinder corresponding to the given g1, gz, g3,
n, h, @, boundary conditions, and material properties. Re-
peating the foregoing procedure with different original length,
curves can be constructed which represent critical loads
as functions of the geometrical dimensions and material
properties of the cylindrical shell.

The details of methods by which the results obtained in the
present paper may be applied as well as some numerical ex-
amples and the effect of the boundary conditions on the
buckling load will be discussed in another paper.1

Appendix: Reduction of the Buckling
Characteristic Eq. (18) to the Case for
Isotropic Material

The elastic moduli of Eq. (2) for an isotropic material are
[C] = [E/(1 — »)][C] (A1)
§z2 = L/20rzx = —L/2 will not make any difference because

the functions are either a purely odd function of z or a purely
even function of z.
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where
E = Young’s modulus
v = Poisson’s ratio
1 v 0
cr={7 "t ° (A2)
0 0 1 -

Then, from Egs. (10) and (13), one has
[4] = [Er/(1 — »)]I[C]
[B] = [0] ) (A3)
[D] = [Er?/12(1 — »3][C]

and
4] = €]
[Ié’] = [0]_ (A4)
(D) = «[C]

where a = h%/12q2. Substituting Egs. (A4) in Egs. (17),
one has )

lgvn)\ al? 4

<v—1;Vn2a>>\

(4 + 30Nt +

Az 1—;——” (1 + a)n

1+v>\1~
;=2 "™ 3

3—v

o+ n

n?

11— 3 —v
3 —_— 2 2
al® 4 (V 3 n a>>\ 2 al? +
nait + 2n2aN? + (0?2 — 1)?a + 1|

(A5)

Substituting Eq. (A5) in Eq. (18), one has the buckling char-
acteristic equation for isotropic material:

1—v
2
1_2‘-1}70\ a>\3—l—<v—1

A+

1 4 a)n? — nPq — Ao —

— v

2nAgs n2a> A A

lé—vn)\ 1;V(1+3a))\2+n2—n2q1—

3—v

Ay — 2nqs

nal? + n — ngr — 2Ngs

v
X

ald 4 (v—l_yn2a>)\+)\q1 3;
C no*4n — ng — 2Ngs aNt + 2n2al? +
(n? — 1)%a + 1 — n?n — Nqs — 2nhqg;

(A6)
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Some Recent Contributions to Panel Flutter Research

Y. C. Fong*
California Institute of Technology, Pasadena, Calif.

With the objective of formulating a realistic computing program to analyze panel flutter
in aerospace vehicles, plausible simplifying assumptions are examined in the light of experi-
mental results. It is shown that in certain areas very simple analysis yields respectable re-
sults, whereas in other areas great elaboration is necessary to obtain an accurate prediction.
In particular, the role played by the boundary layer flow is discussed. The attenuation and
phase shift in pressure-deflection relationship caused by the boundary layer can become im-
portant under certain circumstances. Examples are given which show that the boundary
layer greatly stabilizes flat plates in a transonic or low supersonic flow and circular eylindrical
shells at higher Mach numbers. Some recent contributions to panel flutter research by the
author and his colleagues and students at the California Institute of Technology are summa-
rized. Although details are to be published elsewhere, a brief description of experimental re-
sults concerning flat plates and cylindrical shells is given here. The experimental and theo-
retical investigations taken together provide a fairly clear picture with regard to proper as-

sumptions for an accurate analysis. Recommendations for future research in this field are

given.
Nomenclature
A = pU2L3/MD, ratio of dynamic pressure to panel
rigidity = =* (Q of Ref. 1)
A, = coefficients of Fourier series of z(x,t), Eq. (9)
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Um =m = 1,2, ..., coefficients of sine series of zo(z,t),
Eqgs. (29) and (30)

a, a; = velocity of sound, in main flow and boundary
layer, respectively

B, = coefficients of Fourier series of z:(x,t), Eq. (10)

C,,D,, E, = coefficients, see Eqs. (12) and (13)

D = Eh3/[12(1 — u?)], bending rigidity of plate

f = {requency, cps ’

g = gtructural damping factor

h = thickness of plate or shell wall

k = L /U, reduced frequency in main flow

ks = wlL/Uj;, reduced frequency in boundary layer

L = chord length

M, M, = Mach number of main flow and of boundary layer,
respectively

n = number of waves along circumference (number of
nodes = 2n)

Ap = see Eq. (33)

p(z,t) = wall pressure

P, D5 = static pressure in freestream and in boundary layer,
respectively

P = excess of model internal pressure above ps, psig

P = wind tunnel stagnation pressure

po(z,t) = wall pressure in potential flow without boundary
layer

q = %pU? dynamic pressure of main flow

R = radius of middle surface of circular cylinder

r,0,x = cylindrical polar coordinates

7,75 = absolute temperature in freestream and in bound-

ary layer, respectively



