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Stability of Heterogeneous Aeolotropic Cylindrical
Shells under Combined Loading

S. CHENG*
University of Wisconsin, Madison, Wis.

AND

B. P. C. Hot
Allis Chalmers Manufacturing Company, Milwaukee, Wis.

A theoretical analysis of the buckling problems of heterogeneous aeolotropic cylindrical
shells under combined axial, radial, and torsional loads is presented. Four boundary condi-
tions at each end of the cylinder are satisfied for the case of both ends hinged or that of both
ends clamped. Classical thin shell theory of small deflection is followed. Because only six
elastic coefficients are required out of the usual 21 for a general aeolotropic body, it is possible
to solve Flugge's differential equations of equilibrium by assuming suitable functions for the
displacements of the middle surface. By the superposition of these solutions, a general solu-
tion that satisfies the boundary conditions can be reached. If the thin shell is laminated from
layers of different materials, the resultant forces and moments of an element are integrated
from layer to layer by considering that the six elastic coefficients are piecewise continuous.
Orthotropic and isotropic materials are particular cases of this analysis.

a
A,A,B,J3

C,D,D
e, e

E
G
h
k
L
m
M
n
N
P
P
Q
T
u
V
w
X
X

z
e
x

Nomenclature

radius to middle surface of shell

elastic coefficients
strain components
strain component of middle surface
Young's modulus
shear modulus
thickness of cylindrical shell
buckling coefficient
length of cylinder
number of half-waves in axial direction
resultant moment per unit length
number of waves in circumferential direction
resultant force per unit length
external radial pressure
external axial compression per unit length
load parameter
external torsional force per unit length
axial displacement of middle surface
circumferential displacement of middle surface
radial displacement of middle surface
axial coordinate of middle surface
change of curvature or angle of twist of middle

surface
radial coordinate of middle surface
circumferential coordinate of middle surface
dimensionless parameter = mira/L
Poisson's ratio
stress components
major and minor elastic axes of orthotropic mate-

rial parallel to x-6 plane
angle between x axis and £ axis

= 5( , a. = X, 6, Z

Introduction

IT seems that so far there is no publication that covers a
general study of the stability of aeolotropic (or anisotropic)

material under combined loadings. Ambartsumian,1 in his
recent survey, cited several papers, most of which are in
Russian. However, these papers actually deal with ortho-
tropic material. March et al.12 solved the buckling of thin-
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walled plywood cylinders in torsion in 1945, and March13

solved the buckling of long thin plywood cylinders in axial
compression in 1956. The former is based on the thin shell
theory of small deflection, and the latter is based on the thin
shell theory of large deflection. Both use the energy method.
They actually deal with the heterogeneous (or nonhomo-
geneous) and anisotropic material, because each layer of the
plywood can be orientated at any angle. However, these
analyses still are limited to single loading and partially satis-
fied boundary conditions. As for the papers by Becker and
Gerard2 in 1962, by Cheng3 in 1961, by Hess9 in 1961, and by
Thichemann et al.4 in 1960, they also are limited to ortho-
tropic material and partially satisfied boundary conditions.

The present analysis is more general in solving the buckling
problems of nonhomogeneous anisotropic cylindrical shells
under combined axial, radial, and torsional loads with all four
boundary conditions at each end of the cylinder satisfied.
Based on the classical thin shell theory of small deflection, the
usual assumptions14 can be summarized as follows:

1) The ratio of the thickness of the shell to the radii of
curvature of its middle surface is small as compared with
unity.

2) Displacements are very small as compared with the
thickness of the shell.

3) The straight fibers of an element which are perpendicu-
lar to the middle surface before deformation remain so after
deformation and do not change their length.

Because of the third assumption, it is possible to reduce the
number of independent elastic coefficients (?»•/ of an aniso-
tropic thin shell from 21 to 6. With the elastic coefficients
given, stresses can be defined as functions of the displace-
ments of the middle surface from the stress-strain relations
and strain-displacement relations. Furthermore, the re-
sultant forces and moments can be defined as functions of the
displacements of the middle surface. If the shell is laminated
from layers of different materials, it is then piecewise homo-
geneous but nonhomogeneous as a whole. Similarly, C»/s
are piecewise continuous. The resultant forces and moments
can be integrated piece by piece.

Flugge's differential equations of equilibrium6 are used to
derive the characteristic equation for buckling under com-
bined loads. DonnelPs method5 is followed to establish the
boundary conditions. Since there are so many coefficients
involved, the electronic computer should be used to solve
the problem. Because of this fact, the authors do not at-
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tempt to simplify anything in the course of derivation of
equations.

As has been pointed out already by Von Karman and
Tsien,15 Gerard and Becker,8 and others, large deflection
theory must be used for buckling under axial compression.
Hence, in the application of this analysis, axial load should
be limited to tension or small compression in combination
with other loads, e.g., torsion and internal pressure.

When materials like plywood, reinforced structure, or
glass-reinforced plastic are layered orthotropically, they
are nonhomogeneous and orthotropic. If they are not
layered orthotropically, they are nonhomogeneous and
anisotropic. In this paper, when cylindrical shells laminated
from orthotropic materials, the inclination angle fa between
the major elastic axis of any ^th layer and the axial axis of
the cylinder can be any value. The thickness of each layer
does not necessarily have to be equal to that of the other
layers.

Basic Relations and Equations

For infinitesimal strains, the stress-strain relations may
be expressed by the general Hooke's law7- u in the matrix
form:

crx

0-0
On Oi2 013 014 015 OIG

C%i C%2 CM CM CM (?26

Csi 032 CM 634 035 Cs&

041 042 043 044 045 O46

O51 052 053 054 055 056

Cei C§2 C&3 C*64 0^65 CW

ex
ee
ez (1)

where the C»/s (i, j = 1 , 2 , . . . , 6) are elastic coefficients, or
moduli, of the material. Also, since d, = (?/»-, there are 21
elastic coefficients for an aeolotropic or anisotropic material.
Based on assumption 3 mentioned in the introduction, the
stress-strain relations of an anisotropic material become

0^22

C26 _exe_
(2)

There are now only six elastic coefficients in Eqs. (2). With
these coefficients given, the resultant force (moment) and
stress relations6 can be established from Fig. 1:

-/.-h/2

1 + - ) zdza)

(3)

/
h/2-„,

For a cylindrical element, the strains ex, ee, and ex^ can be
expressed in terms of the displacements u, v, and w of the
middle surface of the shell :6

ex = u,x — zw,x

a a a + z a -\- z
u,e I z\ (z z \exe = ——— + I 1 + - ) v,x - w,xd [ - + —:— 1a + z \ a/ \a a + z/

If I/(a + z) is expanded into the power series

(4)

(5)

and (z/aY or higher orders are neglected as compared with 1,
Eqs. (4) become

zXx
z[l - (z/a)]Xe
02/2a2)] exd° +

ex = e
ef + z[l - (z/a)]Xe

- (z/2a)]Xxd

where

C ^ — 77

60° = (l/a)<X0 + w)
exe° = (u,e/a) + v,x

are the strains at the middle surface of the shell, and

Nx = fh/2 ax ( 1 + - ) dzJ-h/2 \ ̂  a)

A7 fh/2
NS = I a0dz i

J-h/2 ° (

J -h/2 \ a) £

1

N*

Ne

Nxd

*»
Mx

Me

Mxd

=

An ~\~ A 12 ~\~ AIQ + +a a a 2a2

-^*-12 -^-22 -^J-26 I ' pj n2a2

a a a 2a2

A* An 466 + ^J

TT\ | j- I D i D i
#11 -T —— #12 H~ —— #16 -T ——a a a

#16 + ——— #26 + —— #66 + ———a a a

#16 #i6 #66

Xx = — w,xx
Xe = ~(l/a2)(w,66 + w')
Xxe = -(2/a)(w,x6 + (u,e/2a) - (v,x/2)]

(6)

(7)

(8)

are the parameters corresponding to the change of curvatures
or the change of angle of twist.

Substituting Eqs. (2) and (6) in Eqs. (3), the following re-
sultant force (moment) and displacement relations are estab-
lished :

U E> R _L 16
— #12 -Die + ^~a 2a

R Z? 22
-012 -D22 ~ ———a

D
#16

nMl

2a

p R I ^66
#26 #66 + ^~2a

D ^26 D 66

#26 — —— #66 ~ ^T~a 2a

n-̂ 1 n̂16

n n nMe />26 ^66

-^16 ^26 -^66

(9)
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where, respectively,

n, Bv, Dti) = fh
J —

h/2
n/ Z

Cti(l, z, z*)dz (10)

with i,j = 1, 2, 6. Aij's, B^'s, and A/s are symmetric
coefficients because C»/s are symmetric. If the thin shell is
made from laminated layers, then the integration of Eqs.
(10) can be carried out from layer to layer with C»/ to be
constant for each layer; dj may be different from layer to
layer.

From Fig. 1, considering the deformation of an infinitesimal
element, the following differential equations of equilibrium
exist during buckling :6

aNx,x x,e — p(u,ee — aw,x) — aPu,xx — 2Tu,xe = 0

,ee + a(Mxe +
pa(au,x - v,e

Me,e + aMxe,x — pa(vide + w,e) —
v,xx - 2aT(v,xe + w,x) = 0 (11)

a*Mx.xx - aN9 -
a*Pw,xx + 2aT(v,x - w,xQ) = 0

where p, P, and T are, respectively, the external radial pres-
sure, the external axial compression per unit length, and the
external torsional (shearing) force per unit length. Substi-
tuting Eqs. (7-9) in Eqs. (11), the differential equations of
equilibrium then can be expressed in terms of the displace-
ments of the middle surface of the shell:

toe(Aw - #66 + S66 - qi) + a2v,xx(Ais +
+ As) + av,xd(Al2 + ^66 + #12 + 566) +
- a*w,xxx(Bn + Ai) - a2w,xx6(3B1Q + Ae) -

aw,xde(Bn + 2J566 - See) - w ,090(62* - S26) +
aw,x(An + e?i) + w,e(A2& - £2e + 526) = 0 (12a)

Ae)
3J566 -

3J566) - 2J526) - w
wXl ~ 00 = 0

e + Ae) ~

X
2Ae) ~ a*v.xxe(

+ 2526) —
A

a2w,xx(2Bu — #2) —
w,eo(2B22 - 2D22 - qj

where, respectively,

Wiy, Bih Ay) =

- — Ae ~ ^3) —
= 0 (12c)

(13)

and

with i.j = 1 , 2, 6.

a, P} T) (14)

Solution of Differential Equations

Equations (12) are complicated partial differential equa-
tions that are very difficult to solve exactly. One possible
particular solution is by the inverse method. Let the dis-
placements of the middle surface of the shell be

u = U sin[(\x/a) + n6]
v = Fsin[(Xo;/a) + nO]
w = }Fcos[(X;r/a) +.nO]

(15)

where U, V, and W are constants, X = mira/L, n is the num-
ber of waves in the circumferential direction, and m is the
number of half-waves in the axial direction if the circum-
ferential waves do not spin along the cylinder.

Equations (15), of which the origin of the coordinates is at
the mid-length of the middle surface of the cylindrical shell
as shown in Fig. 2, cannot satisfy any boundary condition.
If the length L of the cylinder is very long, then the constraints
at the ends will not affect greatly the magnitude of the
critical stresses. If the cylinder is not very long, then the
end conditions must be considered.

First, let the solution of Eqs. (15) be investigated. Sub-
stituting Eqs. (15) in Eqs. (12), one has

= 0 (16)

where

J5n)X2

iz = (Ai

F13 = i)X3 + n(35ie + A6)X2 +
2 + 2566 - 566) + Au]\ +
- 526) + n(A<* - J526 + 526)

"66 + 3566 + 3566)X2

526)X + n*(l + 522)

16 + 2Ae)X3 + n(BiZ

3D66)X2 + [n2(3526 +
J526]X + n*Bz2 + n

3 + 2[n2(512 + 2566)

(17)

2526)

(n2 - 1)2522 + (2n2 - 1)522 + 1
In order to have nontrivial solution of Eqs. (16), the deter-
minant of the coefficient matrix must be equal to zero :

Fn - X2g2
— X2g2 —

gi F23 — 2Xg3 —
Fn — 2Xg3 — nq\
— X2g2 —

= 0

(18)

Equation (18) can be expanded into the following quadratic
form by neglecting those terms containing the factors g^/g*,
where i, j, k = 1,2, 3, which are negligibly small as compared
with the constant term H6 :

+ #20103 + #3<?32 + #4?! + #503 + #6 +

= 0 (19)
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Fig. 2 Orientation
of axes in the mid-
dle surface of cylin- "

drical shell

~P

where
- 2n\F12

H2 = 4X[n3(Fu + F22 + ^33) - \F12

nFn - 2n*F2z]
Hz = 4X2[n2(Fn + F22 + ^33) - Fu - 2nF2.]

#4 = n2(F12
2 + F13

2 + /V - FnFn - F22F3,
FuFx) + 2n(FnF23 - F12F13)

H6 = 2n\(Fl2
2 - FnF22

- F12F13)

(20)

2F12F13F2S -

2X8F13 -
F33) -

#10=
With given material and dimensions, the minimum qi may
be found from Eq. (19) in terms of g/ and qk, where i, j, k =
1,2, 3 -and i ^j ^ k.

If the given material is isotropic, then the characteristic
Eq. (18) can be reduced (see Appendix) to the characteristic
Eqs. (VII-10) and (VII-24) given by Flugge.6 For ortho-
tropic material, the characteristic Eq. (18) does not check
exactly the characteristic equation by Cheng.3 The latter
is not symmetric because the basic relations and equations
are due to Timoshenko and Gere10 with more simplifications
involved. However, their numerical results have no signifi-
cant difference, as will be pointed out in another paper.16

Boundary Conditions

As was stated in the previous section, if the cylinder is not
very long, the constraint effect at the ends cannot be neg-
lected. Furthermore, when a very long cylinder is being
discussed, it is difficult to decide what length may be called
safely "very long," Hence, it is essential to investigate the
boundary conditions.

Take another look at the characteristic Eq. (18). After
expanding, it is an eighth-degree polynomial of X. Assume
that the minimum gt-, corresponding to a certain value of n,
has been found from Eq. (19) in terms of q, and q^ where
ij j, k = 1, 2, 3 and i ^ j ^ k. Substituting qi} #/, qk) and
n, as well as the given dimensions (except length) and mate-
rial properties in the polynomial, eight roots of X will be
found. At least two of these roots are real, because one of
them must be the original real one. All eight roots of X
satisfy the characteristic Eq. (18) with the same g*, #/, qkj and
n. By the principle of superposition, Eqs. (15) become J

J This method first was used by Donnell, in 1934, to solve
the buckling of thin tube under torsion.5 He simplified Flugge's
differential equations to such a point that the expanded char-
acteristic equation was a fourth-degree polynomial of X. He
had to do that because, at this time, without the aid of a high
speed electronic computer, it was not realistic to attempt to solve
an eighth-degree polynomial.

A*z \sin ( — + nB )
\a /

O /~L

Vt sin ( — + W 0 (21)
=1 \ a
8 /\
^ Wk cos ( — + nO

k = i \ a
For each X&, Uk and Vk can be determined from Eqs. (16) in
terms of Wk. Let the root \k be

X* = (X r + iXO* i=-!1 / 2 (22)
Then, correspondingly,

Wk = (Wr + iWi)k (23)

Uk = (fur + ifui)kWk (24)
Vk = (U + iMkWk (25)

where Xr, X,;, Wr, TF», fur, /«*, fvr, and fvi are all real values.
The coefficients fur, /„», fvr, and fvi are determined from Eqs.
(16). If X/c is real, then Xz-, Wi, fui, and/** will be zero. In
defining, if \i = 0, then

IF,,. = W* = w k+i

and if Xi ^ 0, then

WTk =

After a few manipulations, Eqs. (21) become
7 _

\(TT W, 4- TT •

(U,r,Wt + U^Ww) sir
7

u = l(Ucr,Wk + Ueik+lWk+i)

= 1,3,
(V,rkWk

k = 1 3
(WSTLWk

(26)

**k+ir t+I) sinwtf]

where

Vcr = /,,f3 - M 4

Vsr = U 2 + /-f 1

Wcr = f ,
Wa = -f,
fi = sin(X,x/a) sinh(X»a:/a)

(27)

Id) cosh(X;£/a)
^4 = co$(\rx/a) sinh(X^/a)

and if X; = 0, then

Ud = Ucr

Va = Vcr
Wci = Wcr

and if X* ^0, then

= "F8r

= W8r

/.if,

Substituting Eqs. (26) in Eqs. (7) and (8), one has

(28)

(29)
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1 ^w,x = - 2-s

(WxsrkWk

„ -1 £

»• -- z

i ±a k = 1,3,

^ E
«2 ft = 1,3,

(Xxsr]Wk

1 7

I E
2

c{
"*"

cosnO

smnd]

cosnfl

+ exeeik+lWk+i) cosnS •

e^ ,

_

(-ST^TT* + XesiklWk+1) smnd]
1 7
-9 Ea2 k = i,3

where

Wxcr = -Xrf3 + Xif4
TF,sr = -Xrf2 - Xif,
Cxcr = \rUsr ~ \iUsi

exsr = -\rUcr + \iUd

e0cr = nVSr + Wcr

€0Sr = -nVcr + Wsr

ex0cr = nUKT + Xr7,r - \iV 'si
ex0sr = —nUCr — \rVcr + \iVcixxcr = (xr

2 - Xi2)f2 + 2xrx,-ri
Xxsr = -(Xr

2 - X,2)f3 + 2XrX*f4
X6cr = (n* - I)f2
Xesr = -(n2- l)f,
Xxdcr = -n(2Wxsr + Usr) + XrFsr -
Xxdsr = n(2Wxcr + t/cr) - XrFcr + \,

and if X; = 0, then

cosn<9

cosnd

Xxci = Z«r

X.Qci — -A.0cr

-A. zflci ~ X xdcr

= w

Xxsi = Xxsr

and if \t 9* 0, then

Wxei = -Xrf4 - X,f3
Wxsi = Xrf ! - Xif 2
6xct = ^rUsi + \iUsr

Cxsi = —\rUci — \iUcr

edd = nVsi + Wd
eesi = -nVd + Wsi
exdd = nUsi + Xr78» + X,7sr
ex08i = ^nUd — XrFCi — \iVcr
Xxci = -(X,2 - X,-2)fi + 2X rXif2
Xxsi = -(X r

2 - Xi9)fi - 2XrX,-f8

(30)

(31)

(32)

(33)

Xesi = -(n2 - I)f4
Zriw = -w(2T7«< + C/si) + \rVsi + \iVsr
Xxdsi = n(2Wxci + Uci) - \rVci - \iVcr

With all the foregoing equations available, the investiga-

tion of the boundary conditions now may proceed. It has
been pointed out in many textbooks6' 14 that, at the boundary
of a cylindrical shell, the shearing force Nxe and the twisting
moment Mxe can be combined together to be an effective
shear per unit length Tx, i.e.,

Nx (Mxd/a) (34)

If there exists an axial load P due to the rotation of a line
element by an angle v,x, this axial load P produces a com-
ponent Pv,x in the circumferential direction. Therefore,
the total shear per unit length TXt at both ends of the cylinder
is

Txt = Tx + Pv.x - T (35)
By the same reasoning, the torsional load T at both ends
produces a component Tu,0/a in the axial direction due to the
rotation of a line element by an angle u,0/a.6 The total axial
force per unit length Nxt at both ends is

Nxt = Nx + Tu,Q/a - P (36)

There are four boundary conditions at each end of the cyl-
inder. Two of them are as follows:

1) For the case of both ends hinged
w = 0 Mx = 0 (37)

at s = ±(L/2)
2) For the case of both ends clamped

w = 0 w,x = 0 (38)
at a; = ±(L/2)

Another pair of boundary conditions for both of the foregoing
cases are as follows :

3) If v, u 7^ 0 at both ends, then

Tx + Pv,x = 0 •
ats = ±(L/2) (39)

N* + Tu.e/a = 0

4) I f v , u = Q at both ends, then

v = 0 w = 0 (40)
B,tx = ±(L/2)

5) If «; 7* 0 and w = 0 at both ends, then

Tx + Pv,x = 0
&tx= ±(L/2) (41)

w = 0
6) If v = 0 and u ^ 0 at both ends, then

r = 0
atz = ±(L/2) (42)

N* + Tu,e/a = 0
For example, for radial load only, it is known that P = T = 0
and v, u ^ 0. The boundary conditions are Eqs. (37) and
(39) for both ends hinged, and Eqs. (38) and (39) for both
ends clamped.

From Eqs. (9, 30, and 34), one has

Nx = — l(NXCrWk + Nxci cosntf

ik+1

a & = i,3, _
(Nxsr]Wk + N^^Wt+d smn6]

T, -± E l ,
a fc=i,s^

(Tx,rhWk

MX = A,, y; [(Micrkwk

rkWk + Txcik+1Wk+l)
_

Txsi Wk+l) smnd]
(43)

A? = 1,3,
MxcikWk+l)

_

(MxsrjWk + Mxsik1Wk+l) smnO]
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where
Nxi = (An + Bu)

Txi = (An + 2£16 + AeH, + (A* + 2£26 +
D»)eei + (A<x + 2£66 + fA»Kw +

(#66 + %Dto)Xx8j

Mxi = (Bn + 5nK, + (5U

(44)

-•-' iZi-----1/7 I •«-' J.O--— a/i/j

withy = cr, ci, sr, si. From Eqs. (26), (43), and the first of
Eqs. (30), it is clear that, corresponding to conditions of Eqs.
(37) and (39), at x = L/2,§ one has

2-r \rr crk
k = 1,3,

E (w^w>
ft = 1,3,

E (TT^TF. + F^+1TFi+1) = 0
- 1 Q

= 0

^ (WP* + Txcik+1Wk+1) =0

E (r,^TP* + Txsik+lWk+l) = 0

E (N*~kWk + Ar^+1TT*+1) = 0
A; = 1,3,

(45)

E

E

E
A: = 1,3,

= 0

= o

Equations for other conditions can be formulated similarly.
Equations (45) or their equivalents for different boundary
conditions are eight homogeneous equations of eight unknown
W's. For the nontrivial solution, the determinant of the
coefficients (let it be called boundary characteristic) must
equal zero. The minimum length L, except in the case of the
identity L = 0, solved from the zero determinant, is the
length of the cylinder corresponding to the given qiy qz, qS)
n, h, a, boundary conditions, and material properties. Re-
peating the foregoing procedure with different original length,
curves can be constructed which represent critical loads
as functions of the geometrical dimensions and material
properties of the cylindrical shell.

The details of methods by which the results obtained in the
present paper may be applied as well as some numerical ex-
amples and the effect of the boundary conditions on the
buckling load will be discussed in another paper.16

Appendix : Reduction of the Buckling
Characteristic Eq. (18) to the Case for

Isotropic Material

The elastic moduli of Eq. (2) for an isotropic material are
[C] = [E/(l - V*)][G] (Al)

§ x = L/2 or x = — L/2 will not make any difference because
the functions are either a purely odd function of £ or a purely
even function of x.

where
E = Young's modulus
v = Poisson's ratio

"1 v 0
v 1 0

0 0 ^~

(A2)

Then, from Eqs. (10) and (13), one has
[A] = [Eh/(I - p*)][C]
[B] = [0]
[D] = [Eh*/12(l -

and

[A] = [C]
IB] = [0]
[D] = a[C]

where a = /i2/12a2. Substituting Eqs. (A4) in Eqs. (17),
one has

(A3)

(A4)

n\

3 - v

naX4 + 2n2aX2 + (re2 - l)2a + 1 _
(A5)

Substituting Eq. (A5) in Eq. (18), one has the buckling char-
acteristic equation for isotropic material:

X2 +

2nXg

1 +
2

aX3

r

I — v
2 ( '

3 2 nX

^ A 1 — v- n X 2

X2g2 - 2n\c

( 1 -
+ ('- !
,aX2 + n —

) n 9

(1 + 3a)X2 +

3 — v

h 2

- v \
/{< OC 1 / V | .

?igi — 2Xg3 a^

X2g2 —

n2 — n2gi

1 ' fi — " ^igj

3 " v
1 qi 2
4 + 2n2o;X
h - X2g2 -

X + Xgi

— 2Xg3

X
2 1

- 0

(A6)
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Some Recent Contributions to Panel Flutter Research
Y. C. FUNG*

California Institute of Technology, Pasadena, Calif.

With the objective of formulating a realistic computing program to analyze panel flutter
in aerospace vehicles, plausible simplifying assumptions are examined in the light of experi-
mental results. It is shown that in certain areas very simple analysis yields respectable re-
sults, whereas in other areas great elaboration is necessary to obtain an accurate prediction.
In particular, the role played by the boundary layer flow is discussed. The attenuation and
phase shift in pressure-deflection relationship caused by the boundary layer can become im-
portant under certain circumstances. Examples are given which show that the boundary
layer greatly stabilizes flat plates in a transonic or low supersonic flow and circular cylindrical
shells at higher Mach numbers. Some recent contributions to panel flutter research by the
author and his colleagues and students at the California Institute of Technology are summa-
rized. Although details are to be published elsewhere, a brief description of experimental re-
sults concerning flat plates and cylindrical shells is given here. The experimental and theo-
retical investigations taken together provide a fairly clear picture with regard to proper as-
sumptions for an accurate analysis. Recommendations for future research in this field are
given.

Nomenclature
= pU2L3/MD, ratio of dynamic pressure to panel

rigidity = ^ (Q of Ref. 1)
= coefficients of Fourier series of Zo(x,t), Eq. (9)

Presented at the I AS 31st Annual Meeting, New York, Janu-
ary 21-23, 1963; revision received March 4, 1963. This re-
search was supported by the U. S. Air Force through the Office
of Scientific Research, Office of Aerospace Research. Howard
Wolko and Joseph Long of the Office of Scientific Research pro-
vided much help to the author. The experimental work at
NASA Ames Research Center was carried out with the help
and guidance of Lloyd Jones and Ralph Huntsberger; to them
and to the staff of the Unitary Plan wind tunnel, the author is
sincerely grateful. The Guggenheim Aeronautical Laboratory,
California Institute of Technology team whose work is reported
here consists of Hans Krumhaar, William J. Anderson, Ronald
O. Stearman, Malcolm Lock, Benjamin Cummings, George
Watts, and J. Stuart Keith; to their contributions, individual
references are made in this paper. Ernest E. Sechler provided
much inspiration and guidance to experimentation. Louis
Schmidt and Richard Luntz offered tireless help during the wind
tunnel tests. Above all, Marvin Jessey designed and made
many of the instrumentation components; to his patience, ability,
and accuracy the author owes much for any success of his re-
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and thanks.
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m = 1, 2, . . . , coefficients of sine series of zQ(x,t},
Eqs.(29)and(30)

velocity of sound, in main flow and boundary
layer, respectively

coefficients of Fourier series of Zi(x,t), Eq. (10)
coefficients, see Eqs. (12) and (13)
Eh3/ [12(1 - ju2)], bending rigidity of plate
frequency, cps
structural damping factor
thickness of plate or shell wall
coL/C/, reduced frequency in main flow
coL/Ud, reduced frequency in boundary layer
chord length
Mach number of main flow and of boundary layer,

respectively
number of waves along circumference (number of

nodes = 2n)
see Eq. (33)
wall pressure
static pressure in freestream and in boundary layer,

respectively
excess of model internal pressure above PB, psig
wind tunnel stagnation pressure
wall pressure in potential flow without boundary

layer
^pU2, dynamic pressure of main flow
radius of middle surface of circular cylinder
cylindrical polar coordinates
absolute temperature in freestream and in bound-

ary layer, respectively


